An Open Loop Walking on Different Slopes for NAO Humanoid Robot
نویسندگان
چکیده
Dynamic gait planning for humanoid robots encounters difficulties such as stability, speed, and smoothness. In most of previous studies, joints’ trajectories are calculated in 3D Cartesian space, then, introducing boundary conditions and using polynomials, the first and second derivatives of the motion are ensured to be continuous. Then, the stability of the motion is guaranteed using Zero Moment Point (ZMP) stability criterion. In this study, a trajectory planner is presented using the semi-ellipse equations of the motion; the continuity of the derivatives is preserved. Stabilization of motion is attained through using ZMP criterion and 3d inverted pendulum equations in three slope conditions. The effectiveness of the proposed approach is investigated using Webots software. Implementing proposed approach, smoothness, stability, and convenient speed (rather than 17 cm/s in flat condition) are achieved. © 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Centre of Humanoid Robots and Bio-Sensor (HuRoBs), Faculty of Mechanical Engineering, Universiti Teknologi MARA.
منابع مشابه
Biped Walk Learning Through Playback and Corrective Demonstration
Developing a robust, flexible, closed-loop walking algorithm for a humanoid robot is a challenging task due to the complex dynamics of the general biped walk. Common analytical approaches to biped walk use simplified models of the physical reality. Such approaches are partially successful as they lead to failures of the robot walk in terms of unavoidable falls. Instead of further refining the a...
متن کاملA Closed-Loop Gait for Humanoid Robots Combining LIPM with Parameter Optimization
Even with the recent advances in the area of dynamic walking on humanoid robots there is still a significant amount of manual calibration required in practice due to the variances in the hardware. That is in order to achieve the performance needed in environments such as RoboCup. We present a LIPM-based closed-loop walk, that adapts to differences in the physical behavior of the robot by optimi...
متن کاملImproving Biped Walk Stability Using Real-Time Corrective Human Feedback
Robust walking is one of the key requirements for soccer playing humanoid robots. Developing such a biped walk algorithm is non-trivial due to the complex dynamics of the walk process. In this paper, we first present a method for learning a corrective closed-loop policy to improve the walk stability for the Aldebaran Nao robot using real-time human feedback combined with an openloop walk cycle....
متن کاملA Universal Biped Walking Generator for Complex Environments with Pattern Feasibility Checking
In this paper, we propose a universal biped walking generator that can plan smooth and flexible walking motions in complex environments, including stairs, slopes, and obstacles. In addition to generating collision-free patterns while keeping the balance of the robot, this generator also checks whether the patterns are achievable for the robot. Aiming at this goal, we introduce a simplified walk...
متن کاملOmnidirectional Walking and Active Balance for Soccer Humanoid Robot
Soccer Humanoid robots must be able to fulfill their tasks in a highly dynamic soccer field, which requires highly responsive and dynamic locomotion. It is very difficult to keep humanoids balance during walking. The position of the Zero Moment Point (ZMP) is widely used for dynamic stability measurement in biped locomotion. In this paper, we present an omnidirectional walk engine, which mainly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012